
Binary Addition Using Multiplexers

Toki Nishikawa

September 27 2022
6-8pm Tuesday lab with Kim Nguyen/Nick Boudreau

The objective of the lab is to construct a circuit that adds two 2-bit binary
numbers, producing a 3-bit result, using 8:1 multiplexers.

1 Design

The first step in the design process is to produce all of the truth tables needed
for 2-bit binary addition. Let M and N represent the two 2-bit binary numbers,
and let R represent the 3-bit binary sum. The addition equation is

Tables 1-4 show the truth tables associated with the least significant bit, the
carry out of the least significant bit, the second bit, and the carry out of the
second bit (which is just the third bit).

M0 N0 R0

0 0 0
0 1 1
1 0 1
1 1 0

Table 1: Truth table for the least significant bit

Each of the four truth tables can be implemented using an 8:1 multiplexer.
Figure 1 shows the logic diagrams associated with each truth table. Note that
each multiplexer has two outputs, a standard output Y and an inverted output
W . Also note that the first two truth tables (Tables 1 and 2) only have
two inputs, M0 and N0, and so their corresponding multiplexers will have four
unused inputs. As shown in Figure 1, these unused inputs are connected to
ground, along with the unused select line C. The unused inverted output W is
left unconnected for all multiplexers.

1

M0 N0 Cout0

0 0 0
0 1 0
1 0 0
1 1 1

Table 2: Truth table for the carry out of the least significant bit.

M1 N1 Cout0 R1

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Table 3: Truth table for the second bit.

M1 N1 Cout0 R2

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Table 4: Truth table for the carry out of the second bit.

Figure 1: Logic diagrams associated with the truth tables in tables 1-4

2

The inputs M0, N0, M1, and N1 shown in Figure 1 are connected to the
DIP switch circuit shown in Figure 2. You may connect the outputs R0, R1,
and R2 to LEDs to easily visualize the outputs, but I was lazy and just used a
multimeter to check the voltages.

Figure 2: DIP switch circuit

The full 2-bit adder circuit is shown in Figure 3. In order to enable the
inputs, Ḡ must be at a low logic level. Note the carry wire which connects the
output of the second multiplexer, corresponding to Table 2, with the inputs of
the third and fourth multiplexers, corresponding to Tables 3 and 4.

Figure 3: Full 2-bit adder circuit

3

2 Implementation

The completed circuit is shown in Figure 4. The first step was to create the
circuit for the DIP switch shown in Figure 2. I had no issues with this part –
an on state produced a low logic value while an off state produced a high logic
value.

Figure 4: Final circuit on breadboard

Next, I set up the multiplexer corresponding to the addition of the least
significant bits, M0 and N0. The inputs A and B were connected to N0 and
M0, respectively. The output R0 represents the value of the least significant bit,
and I had connected this pin to an LED, according to the circuit in Figure 5,
to easily visualize the change in voltage.

Figure 5: LED circuit

4

After making all the necessary connections for the first multiplexer, I tested
it by setting the DIP switch on for both inputs, N0 and M0, which corresponds
to low logic levels for both inputs. As can be seen in Table 1, this should
produce a low output. However, the LED was on. My plan for debugging was
to check that the input voltages were correct, and then check the wiring. The
input voltages were fine, but some of the wiring was wrong. More specifically,
I had forgotten to leave the W output free, and so the Ḡ and GND wires were
shifted up one pin. After that fix, all combinations of the inputs produced the
correct output.

I then set up the multiplexer corresponding to the carry out of least signifi-
cant bit. Again, the inputs A and B were connected to N0 and M0, respectively.
The output Cout0 represents the carry out of the least significant bit, and I had
connected this pin to an LED, according to the circuit in Figure 5, to easily
visualize the change in voltage. After making all the necessary connections, I
tested it, but the LED would not light up for any combination of the inputs. I
immediately checked the orientation of the LED, and sure enough, it was the
wrong way around.

Next, I connected the multiplexer corresponding to the second bit. The
inputs A, B, and C were connected to Cout0, N1, and M1, respectively. The
output R1 represents the second bit, and I had connected this pin to an LED.
After making all the necessary connections, I tested it with the inputs M1 = 0,
N1 = 0, and Cout0 = 1, which should yield a high output as can be seen in
Table 3. However, the LED was off. I checked the voltages of the inputs,
and it didn’t take me long to realize that the power supply wasn’t connected.
Embarrassing.

Finally, I incorporated the last multiplexer corresponding to the carry out
of the second bit. Again, the inputs A, B, and C were connected to Cout0, N1,
and M1, respectively. The output R2 represents the carry out of the second
bit, and I had connected this pin to an LED. After making all the necessary
connections, I tested it with the inputs M1 = 0, N1 = 1, and Cout0 = 1, which
should yield a high output as can be seen in Table 4. However, the LED was
off. I checked the voltages of the inputs, and they were correct. After staring at
the wiring for some time, I saw that the wire connecting the output to the LED
was somewhat loose. I pushed it further into the breadboard, and everything
worked.

In order to test the functionality of the complete circuit, I checked the volt-
ages of the three outputs R0, R1, and R2 with a multimeter for various com-
binations of the inputs. As I mentioned earlier, I could have connected each
output to an LED to easily visualize the changes in voltage, but instead, I chose
to measure the voltage of the output directly. The three unconnected green
wires shown in Figure 4 correspond to the three standard outputs.

5

Equation M0 N0 M1 N1 Answer R0 R1 R2

00 + 00 0 0 0 0 000 0 0 0
01 + 00 1 0 0 0 001 1 0 0
01 + 01 1 1 0 0 010 0 1 0
10 + 01 0 1 1 0 011 1 1 0
10 + 10 0 0 1 1 100 0 0 1
01 + 10 1 0 0 1 011 1 1 0
11 + 01 1 1 1 0 100 0 0 1
11 + 10 1 0 1 1 101 1 0 1
11 + 11 1 1 1 1 110 0 1 1

Table 5: Test results

3 Testing

The results of the tests conducted on the final circuit are shown in Table 5. The
first column shows the mathematical equation we are implementing in binary.
For example, the equation in the second-to-last row is 11+10 which corresponds
to 3 + 2 in base-10. The first number is M and the second number is N, and so
M0 = 1, M1 = 1, N0 = 0, and N1 = 1. The circuit produces the result 101 in
binary, which is 5 in base-10.

4 Reflection

The most valuable lesson from this lab was the importance of testing your cir-
cuit as you build it. It is clear from the description of my debugging struggles
that I would have encountered a lot of problems if I had built the entire circuit
in one go. However, since I tested the circuit after incorporating each multi-
plexer, I was able to quickly identify the bugs associated with each multiplexer
implementation. After I was certain that one multiplexer was functioning as
it should, I knew that any bugs I encountered while working on the next mul-
tiplexer had to be associated with that new multiplexer. Thus, for every new
multiplexer, my debugging was limited to testing its inputs and outputs.

A skill I need to refine is methodically debugging. Although I didn’t spend
a great deal of time on any of the bugs I encountered, I could have solved these
problems faster had I created some sort of methodology. The issues I had were
as follows: incorrect wiring, wrong orientation of the LED, disconnected power
supply, and disconnected wires. All of these issues are quite general and will
likely happen again in the future. Since some are easier to check than others –
for example, checking that the power supply is connected is much easier than
checking if all the wiring is correct – it would be more efficient to check them in
a certain order. When I was trying to debug the problem I was having with the
third multiplexer, I checked the voltages of all the inputs before I realized that
the power supply was disconnected. I would have saved time if I had initially

6

checked the connection of the power supply. Thus, in order to debug more
efficiently, I’ll create a list of common bugs and order them from least to most
time-consuming. As of now, that list is:

• Check connection of power supply

• Check orientation of circuit elements

• Check wiring

• Check connection of wires

Although checking the wiring is arguably more tedious than checking that
the wires are properly connected to the breadboard, the latter is less common
of a problem and so should be left to the end. This lab took around two hours
to complete.

List of Tables

1 Truth table for the least significant bit 1
2 Truth table for the carry out of the least significant bit. 2
3 Truth table for the second bit. 2
4 Truth table for the carry out of the second bit. 2
5 Test results . 6

7

