
Building an ALU and displaying the result

Toki Nishikawa

October 11 2022
6-8pm Tuesday lab with Kim Nguyen/Nick Boudreau

The objective of the lab is to implement a 4-bit arithmetic logic unit (ALU),
which can perform addition, subtraction, bitwise AND, and bitwise OR, using

an FPGA and display the output on a seven-segment display.

1

1 Design

The first step is to create a VHDL module that describes an ALU with two 4-bit
inputs, a 2-bit control signal, and a 4-bit output. Next, we must create a top-
level module that instantiates our ALU module. Note that the corresponding
code for all modules can be found in section 5. The schematic of the top-level
module with just the ALU module is displayed in Figure 1. In this diagram,
A and B represent the two 4-bit inputs, Operation represent the 2-bit control
signal, and Output represents the 4-bit output.

Figure 1: Schematic of top-level module with ALU module

Once the ALU module is functioning properly, we can construct and incorpo-
rate a module that describes our seven-segment display. The updated schematic
of the top-level module is shown in Figure 2. In this diagram, Output now rep-
resents a 7-bit output. This is all of the logic we wish to implement using our
FPGA.

Figure 2: Schematic of top-level module with ALU and seven-seg modules

If you take a look at the code in section 5, you will see the following port
declarations:

• For ALU module:

– a: 4-bit unsigned

– b: 4-bit unsigned

– s: 2-bit standard logic vector

– y: 4-bit unsigned

• For seven-segment display module:

– S: 4-bit unsigned

– segments: 7-bit standard logic vector

2

• For top module (named lab5 in the code):

– a t: 4-bit unsigned

– b t: 4-bit unsigned

– s t: 2-bit standard logic vector

– y t: 7-bit standard logic vector

Note that the inputs to the top module, a t, b t, and s t share the same types
as the inputs to the ALU module, a, b, and s, respectively. Also, the output of
the top module, y t is the same type as the output of the seven-segment display
module, segments. Similarly, the output of the ALU module, y, is the same
type as the input to the seven-segment module, S.

One of the errors I encountered while writing the code was the following:

ERROR - Could not resolve blackbox module ‘alu module’.

This error occurred while I was trying to compile the code for the top module,
and it took me a fair bit of time to figure out. The internet wasn’t particularly
helpful, and I looked through the code for my top module over and over, but
I couldn’t find anything wrong. It turns out that the component name for my
ALU module in my top module did not match the entity name in the ALU
module, which was alu mod as opposed to alu module. Since I was initially only
looking at the code for my top module, I wasn’t able to identify the issue right
away. Thus, it is important to check all of the VHDL modules corresponding
to your components when debugging errors in your top module!

2 Implementation

In order to easily configure different input combinations, we will use a DIP
switch for the two 4-bit inputs and two pushbutton switches for each bit in the
control signal. A diagram of this circuit is shown in Figure 3. Note that we
don’t need to use pull-up resistors since these are already included in the FPGA.

Figure 3: Schematic of DIP switch and pushbutton switches

3

Recall that the first step in our design was to create a top module that
instantiates our ALU module. It’s a good idea to test that the ALU module
is functioning correctly before moving on to the seven-segment display module.
Thus, we will flash the design corresponding to Figure 1 onto our FPGA and
test it by toggling the DIP switches and pressing the pushbuttons. We can also
wire up some LEDs to the outputs. A picture of this circuit is shown in Figure
4. Notes on the debugging process for this circuit can be found in the next
section.

Figure 4: Circuit to test ALU

After we have achieved a functioning ALU module, we can incorporate the
seven-segment display module and flash the updated design onto our FPGA.
The inputs to our circuit remain unchanged, but the output is now a 7-bit stan-
dard logic vector corresponding to each segment on the seven-segment display.
Figure 5 shows the schematic for the seven-segment display while Figure 6
shows the letters associated with each segment. The latter will be referenced
during the testing section.

4

Figure 5: Schematic of seven-
segment display

Figure 6: Letters associated with
each segment

The completed circuit is shown in Figure 7.

Figure 7: Completed circuit

3 Testing

3.1 Testing ALU module

Each step of the implementation process had its challenges. The circuit created
to test the ALU module (shown in Figure 4) did not work the first time round.

5

At first, none of the LEDs would light up for any combination of the inputs,
which is indicative of a problem that affects the entire circuit. One such issue
is a faulty FPGA ground connection, but that seemed to be okay. I checked
that the output pins were all set correctly, as this could have affected all of the
LEDs if they happened to all be set incorrectly. I flashed the FPGA one more
time to ensure that the code had uploaded properly, and I made sure that it
was connected to power. After none of that worked, I got help from my TA who
suggested that I try a different ground pin on the FPGA – it turned out that
this was the issue. I had a faulty ground pin. As you will see throughout the
rest of this lab, faulty pins are more common than I thought. After this fix, my
LEDs were lighting up and it was time to test a bunch of combinations of the
inputs.

A3 A2 A1 A0 B3 B2 B1 B0 S1 S0 Operation Expected Result

0 0 0 1 0 0 0 1 1 0 Addition 0010 0100

Table 1: First test of ALU module

Table 1 shows the inputs and outputs of the first test while Figure 8
shows the corresponding circuit (note that the inputs, A, B, and S, represent
the inputs of the top module a t, b t, and s t in the code). As you can see, the
result I recorded was not the expected 4-bit binary number. Since the result
just had a 1 in y(2) instead of y(1), I suspected that I had swapped the two
output wires associated with these middle bits. After checking the output pins
on Radiant and the corresponding wiring, I discovered that I was misreading
the order I had set for the LEDs. The LEDs are ordered in an L shape where
the most significant bit of the 4-bit output is represented by the yellow LED at
the tip of the L. Thus, the lit, red LED in Figure 8 represents the second least
significant bit, yielding the correct result 0010. However, I was initially reading
the yellow LED at the tip of the L as the least significant bit. Thus, the output
was actually correct. In the future, it may be worth writing the bit numbers
for each input and output on sticky notes and sticking them to the appropriate
circuit elements on the breadboard.

6

Figure 8: First test of ALU module circuit

The second round of testing is summarized in Table 2. I tried to add 0001 to
0010 but obtained an incorrect result. All the output connections were correct,
since this is what I had double-checked previously. All of the wires seemed to
be plugged into the breadboard well. I checked the code for my ALU module,
and everything seemed to be okay. I decided to test the remaining operations
with the same A and B to see if that would provide any hints. These results
are summarized in Table 3. As you can see, the addition, bitwise AND, and
subtraction operations were not functioning properly. Then suddenly, as I was
trying different combinations, everything just started working. I really have no
idea what happened. Maybe there was a connection loose that got pushed in
while I was re-configuring the DIP switch. Who knows.

Table 4 shows the tests for all operations of four different configurations of
A and B. As you can see, they all obtained the correct results.

A3 A2 A1 A0 B3 B2 B1 B0 S1 S0 Operation Expected Result

0 0 0 1 0 0 0 1 1 0 Addition 0010 0010
0 0 0 1 0 0 1 0 1 0 Addition 0011 0100

Table 2: Second test of ALU module

7

A3 A2 A1 A0 B3 B2 B1 B0 S1 S0 Operation Expected Result

0 0 0 1 0 0 1 0 1 0 Addition 0011 0100
0 0 0 1 0 0 1 0 0 1 OR 0011 0011
0 0 0 1 0 0 1 0 0 0 AND 0000 0001
0 0 0 1 0 0 1 0 0 0 Subtraction 1111 1110

Table 3: Third test of ALU module

A3 A2 A1 A0 B3 B2 B1 B0 S1 S0 Operation Expected Result

0 0 0 1 0 0 1 0 1 0 Addition 0011 0011
0 0 0 1 0 0 1 0 0 1 OR 0011 0011
0 0 0 1 0 0 1 0 0 0 AND 0000 0000
0 0 0 1 0 0 1 0 0 0 Subtraction 1111 1111
0 1 1 0 1 0 1 0 1 0 Addition 0000 0000
0 1 1 0 1 0 1 0 0 1 OR 1110 1110
0 1 1 0 1 0 1 0 0 0 AND 0010 0010
0 1 1 0 1 0 1 0 1 1 Subtraction 1100 1100
1 0 0 1 1 1 1 1 1 0 Addition 1000 1000
1 0 0 1 1 1 1 1 0 1 OR 1111 1111
1 0 0 1 1 1 1 1 0 0 AND 1001 1001
1 0 0 1 1 1 1 1 1 1 Subtraction 1010 1010
1 1 0 1 0 0 0 1 1 0 Addition 1110 1110
1 1 0 1 0 0 0 1 0 1 OR 1101 1101
1 1 0 1 0 0 0 1 0 0 AND 0001 0001
1 1 0 1 0 0 0 1 1 1 Subtraction 1100 1100

Table 4: Final test of ALU module

3.2 Testing seven-segment module

Next, we incorporated the seven-segment display (I’ll refer to this as sevenseg for
the rest of the report) to make the circuit shown in Figure 7. At first, nothing
was showing up on the sevenseg for any combination of the inputs. Similar to
when none of the LEDs worked in the previous circuit, this is indicative of a
problem that affects all pins of the sevenseg. Thus, it is likely an issue with the
anode pin. This pin was connected to a resistor, and then to 5V on the FPGA.
I checked the voltage of the anode pin with my multimeter to ensure that it was
3.3V , but as I had feared, its voltage was much less. I then checked the voltage
of the 5V pin on the FPGA to make sure that it was actually outputting 5V .
As I did this, I realized I had actually connected it to the 3.3V pin, which I
didn’t know was present on the FPGA. Since the anode pin on the sevenseg
was connected to 3.3V with a resistor, the light was so faint that I couldn’t see
it. I also must have used a resistor much too large since I initially measured an
extremely small voltage. In the end, I just directly connected the anode to the
3.3V pin on the FPGA without a resistor, and I could see the outputs perfectly.

8

Table 5 shows the inputs and outputs of the first test. As you can see, the
test failed. Instead of getting the expected 2, I obtained an L, which should
never happen. I decided to look into one incorrect segment at a time. I started
with the middle segment, G, which should have been lit up but wasn’t. I checked
the voltage of the sevenseg pin associated with G, and it was high. Note that
a high voltage indicates that the corresponding segment will be off. Thus, I’m
either interpreting the result incorrectly, or there is something wrong with the
logic. It turns out that I was reading the result wrong. I had the two 4-bit
inputs on the DIP switch ordered from most significant to least significant bit,
but I was reading it the other way around.

Problem not completely solved. Table 6 shows the new result, a lowercase
c. This result should also never happen (a 12 is represented with an upper
case C). Although G is now lit, there are two other segments that should be
on, A and B. For some unknown reason, when I pushed the wires associated
with these pins into the breadboard with enough force (on the FPGA pin side
rather than the resistor side), the corresponding segments both lit up. This
was very bizarre. I tried changing the wires, but that didn’t help. I suspected
that something was wrong with the breadboard, and so I tried connecting the
wires to the soldering on the top of the FPGA instead, and it worked. A TA
advised that the problem could also be due to faulty pins on the FPGA board,
which turned out to be correct since we replaced the FPGA board and it worked
perfectly. This still doesn’t explain why A and B were lighting up when I was
pushing the wires really hard into the breadboard. Maybe part of the wire
would touch the soldering on the top of the FPGA board. Who knows.

Table 7 shows the tests for all operations of five different configurations of
A and B. As you can see, they all obtained the correct results.

A3 A2 A1 A0 B3 B2 B1 B0 S1 S0 Operation Expected Result

0 0 0 1 0 0 0 1 1 0 Addition 2 L

Table 5: First test of completed circuit

A3 A2 A1 A0 B3 B2 B1 B0 S1 S0 Operation Expected Result

0 0 0 1 0 0 0 1 1 0 Addition 2 c

Table 6: Second test of completed circuit

4 Reflection

The most valuable takeaway from this lab is knowing how to take advantage of
Radiant software to program an FPGA. Up until this point, we have constructed
our circuits using only logic ICs. Now, we have the tools to create much more
complex logic functions, such as the ones demonstrated in this lab.

9

A3 A2 A1 A0 B3 B2 B1 B0 S1 S0 Operation Expected Result

0 0 0 1 0 0 1 0 1 0 Addition 3 3
0 0 0 1 0 0 1 0 0 1 OR 3 3
0 0 0 1 0 0 1 0 0 0 AND 0 0
0 0 0 1 0 0 1 0 0 0 Subtraction F F
0 1 1 0 1 0 1 0 1 0 Addition 0 0
0 1 1 0 1 0 1 0 0 1 OR E E
0 1 1 0 1 0 1 0 0 0 AND 2 2
0 1 1 0 1 0 1 0 1 1 Subtraction C C
1 0 0 1 1 1 1 1 1 0 Addition 8 8
1 0 0 1 1 1 1 1 0 1 OR F F
1 0 0 1 1 1 1 1 0 0 AND 9 9
1 0 0 1 1 1 1 1 1 1 Subtraction A A
1 1 0 1 0 0 0 1 1 0 Addition E E
1 1 0 1 0 0 0 1 0 1 OR d d
1 1 0 1 0 0 0 1 0 0 AND 1 1
1 1 0 1 0 0 0 1 1 1 Subtraction C C
0 1 1 1 1 1 0 0 1 0 Addition 3 3
0 1 1 1 1 1 0 0 0 1 OR F F
0 1 1 1 1 1 0 0 0 0 AND 4 4
0 1 1 1 1 1 0 0 1 1 Subtraction b b

Table 7: Final test of completed circuit

Although my Radiant abilities have improved massively throughout the
course of this lab, I continue to struggle with syntax. I believe that the best way
to practice VHDL syntax is to create my own cheat sheet that includes code
I’ve written in previous projects. I’ve already started to compile a collection of
VHDL modules that could be useful in the future.

The prelab took ∼30min, the lab itself took ∼6 hours, and the report took
∼6 hours.

List of Tables

1 First test of ALU module . 6
2 Second test of ALU module . 7
3 Third test of ALU module . 8
4 Final test of ALU module . 8
5 First test of completed circuit . 9
6 Second test of completed circuit 9
7 Final test of completed circuit . 10

10

5 VHDL code

5.1 Top Module

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

entity lab5 is

port(

a_t : in unsigned(3 downto 0);

b_t : in unsigned(3 downto 0);

s_t : in std_logic_vector(1 downto 0);

y_t : out std_logic_vector(6 downto 0)

);

end;

architecture synth of lab5 is

component alu_mod is

port(

a : in unsigned(3 downto 0);

b : in unsigned(3 downto 0);

s : in std_logic_vector(1 downto 0);

y : out unsigned(3 downto 0)

);

end component;

component sevenseg is

port(

S : in unsigned(3 downto 0);

segments : out std_logic_vector(6 downto 0)

);

end component;

signal output_alu : unsigned(3 downto 0);

begin

alu_inst : alu_mod

port map (

a => a_t,

b => b_t,

s => s_t,

y => output_alu

);

sevenseg_inst : sevenseg

port map (

S => output_alu,

11

segments => y_t

);

end;

5.2 ALU Module

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

entity alu_mod is

port(

a : in unsigned(3 downto 0);

b : in unsigned(3 downto 0);

s : in std_logic_vector(1 downto 0);

y : out unsigned(3 downto 0)

);

end alu_mod;

architecture synth of alu_mod is

begin

y <= a and b when s(1) = ’0’ and s(0) = ’0’ else

a or b when s(1) = ’0’ and s(0) = ’1’ else

a + b when s(1) = ’1’ and s(0) = ’0’ else

a - b;

end;

5.3 Seven-segment Module

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

entity sevenseg is

port(

S : in unsigned(3 downto 0);

segments : out std_logic_vector(6 downto 0)

);

end sevenseg;

architecture synth of sevenseg is

begin

process(all) begin

case S is

when X"0" => segments <= "0000001";

when X"1" => segments <= "1001111";

12

when X"2" => segments <= "0010010";

when X"3" => segments <= "0000110";

when X"4" => segments <= "1001100";

when X"5" => segments <= "0100100";

when X"6" => segments <= "0100000";

when X"7" => segments <= "0001111";

when X"8" => segments <= "0000000";

when X"9" => segments <= "0000100";

when X"A" => segments <= "0001000";

when X"B" => segments <= "1100000";

when X"C" => segments <= "0110001";

when X"D" => segments <= "1000010";

when X"E" => segments <= "0110000";

when X"F" => segments <= "0111000";

when others => segments <= "1111111";

end case;

end process;

end;

13

