
Flashing Displays

Toki Nishikawa

October 25 2022
6-8pm Tuesday lab with Kim Nguyen/Nick Boudreau

The objective of the lab is to display a 2-digit number in base 10 on a
seven-segment display.

1

1 Design

The first step in the design process is to build a VHDL module that alternately
flashes two LEDs. A schematic of the top-level module is shown in Figure
1. The HSOSC module represents the high speed oscillator within the iCE40
FPGA and produces a 48MHz clock signal. The ‘counter logic’ is designed to
increment a 26-bit binary number, called a in the code, by one on the rising
edge of the clock. When it reaches its maximum value, it will roll over to zero
and start again. The final code for the top-module can be found in Section 5
– its entity name is lab6.

Figure 1: Schematic of top-level module with HSOSC module and counter logic

Since the counter rolls over, the most significant bit will alternate between
zero and one. This is the mechanism we will use to simultaneously display two
independently-controlled digits on the seven-segment display. Since the two
digits share the cathode wires, we are unable to keep both of them on and
control them independently. However, we can display one digit at a time and
alternate between them really fast so that it looks like they are both on. We will
achieve this by wiring up the anode pins to outputs that switch between a high
and low voltage at a frequency set by our counter. The corresponding output in
the code is anode, which is a 2-bit standard logic vector. Each bit will be wired
up to each anode on the seven-segment display, and so anode will alternate
between ‘01’ and ‘10’. The frequency of the alternating bits is dependent on
which bit we select from the 26-bit binary number, with less significant bits
yielding a higher frequency. Thus, in order to identify an appropriate flashing
frequency for our seven-segment display, we will use a bit that alternates quickly
enough so that our eyes cannot see any flashing but slowly enough so that we
minimize energy costs.

The next step is to create a dual-decimal-digit-driver (DDDD) module that
will take a 6-bit unsigned integer and produces two 7-bit outputs corresponding
to the two digits on the seven-segment display. A schematic of the DDDD
module is shown in Figure 2.

Figure 2: Schematic of DDDD module

2

This module instantiates a sevenseg module – the code for the sevenseg
module and the DDDD module can be found in Section 5. The ‘division
logic’ in Figure 2 refers to converting the 6-bit unsigned integer into two 4-bit
unsigned integers, one representing the tens place, digit1 bcd in the code, and
the other representing the ones place, digit0 bcd in the code. The naming ‘bcd’
stands for binary coded decimal, indicating that we are representing a decimal
number with two binary numbers. The largest integer that can be obtained
with a 6-bit binary number is 63, and so our seven-segment display should be
able to display all integers in the interval 0 to 63. The signal digit0 bcd is
obtained using the mod operator. The input number, count in the code, mod
10 will yield the ones place. In order to obtain digit1 bcd, we need to divide
count by 10. However, dividing by factors other than 2 is challenging, and
thus we will instead multiply by 52 and divide by 512 which is equivalent to
dividing by 10.16. The signals digit0 bcd and digit1 bcd are then inputted into
the sevenseg module which outputs two 7-bit standard logic vectors, digit0 and
digit1, respectively.

Next, we will instantiate the DDDD in our top module according to the
schematic shown in Figure 3. The input to our top-module will be a 6-bit
unsigned integer, dip value in the code, which is port-mapped to count, the
input to our DDDD module. We will use a DIP switch to specify the input
number, although we could have used any number generation mechanism.

Figure 3: Schematic of top-module with DDDD

Now, we must integrate the counter logic with the outputs of the DDDD in
order to alternate the two digits on the seven-segment display. We do this using
a 2:1 multiplexer as shown in Figure 4. If we take a look at the code for our top-
module, there are two outputs, a 7-bit standard logic vector named sevenseg and
anode which we mentioned earlier. The output sevenseg is mapped to the pins
that will be wired to the cathode pins of the seven segment display. The output
anode is mapped to the pins that will be wired to the anode pins of the seven
segment display. More specifically, the most significant bit of anode is mapped
to the anode pin controlling the tens place digit while the least significant bit is
mapped to the anode pin controlling the ones place digit.

3

Figure 4: Schematic of final top-module

We will assign signal digit0 select, which is mapped to digit0, to sevenseg
when the nineteenth bit of a is 0 and signal digit1 select, which is mapped to
digit1, to sevenseg when the nineteenth bit of a is 1. Thus, we want anode to
have the value ‘01’ when the nineteenth bit of a is 0 and ‘10’ when the the
nineteenth bit of a is 1. The choice of the nineteenth bit will be explained in
Section 3.

2 Implementation

Recall that the first step in our design process was to create a top module that
includes the counter logic. It is a good idea to test that the counter logic is
functioning correctly before incorporating the DDDD module. Thus, we will
flash the design corresponding to Figure 1 onto our FPGA and test it by
connecting the two outputs to LEDs. These outputs correspond to the signals
bit iszero and bit isone in the final top-level module code, and they indicate
whether a specified bit in a is 1 or 0. In order to test the counter’s functionality,
we will turn one LED on when the most significant bit of a is 0 and the other
LED on when it is 1. The resulting circuit is shown in Figure 5. Note that the
DIP switch and pushbuttons are not a part of this circuit. The LEDs should
alternate with a period of 1.3980 seconds since the HSOSC module produces a
48MHz clock signal and 1 period corresponds to 226 signals.

4

Figure 5: Circuit to test counter logic

In order to configure the dip value input, we will use a DIP switch. Note
that we don’t need to use pull-up resistors since these are already included in
the FPGA. The sevenseg and anode outputs should be connected to the seven-
segment display according to the schematic shown in Figure 6.

Figure 6: Schematic of seven-segment display

Figure 7 shows the completed circuit.

5

Figure 7: Completed circuit

3 Testing

3.1 Testing counter logic

The first step in the implementation process was to construct a circuit to test the
counter logic. As mentioned earlier, we started with just two outputs (which
are now signals), bit iszero and bit isone, that describe the state of the most
significant bit in a. We also calculated the theoretical period of the flashing
LEDs to be 1.3980s. In order to make sure that our circuit is performing as
expected, we will time the period of the flashing LEDs with a stopwatch. The
results are displayed in Table 1.

The average of the results in Table 1 is 1.304s, which is very close to our
theoretical period 1.398s. With that said, our strategy of alternating between
the two digits on the seven-segment display will not work very well if we stick
with a period of 1.398s. Consequently, we must reduce the period until we
can no longer tell that each digit is flashing on and off, and it looks as if it is
displaying two digits simultaneously. Recall that the frequency increases as we
consider less significant bits in a (this should make sense intuitively). Thus, we
will revise the bit in question until the the display seems simultaneous. It turns
out that this occurs on the 19th bit.

6

Time (s)

1.30
1.25
1.18
1.25
1.43
1.33
1.41
1.31
1.30
1.28

Table 1: Testing of counter period

3.2 Testing the completed circuit

The completed circuit, shown in Figure 7, was bound not to work on the first
try since we just wrote a whole bunch of code. The first test is shown in Table
2 where dip value is the 6-bit input, # is the corresponding value in base 10,
Exp.sgments are the segments we expect in the order A-G, and Meas.sgments
are the segments we observed in the order A-G. For the sake of simplicity, a
‘1’ indicates that a segment is ON while a ‘0’ indicates that a segment is OFF,
even though we actually send a high voltage to the segments we want OFF. The
letters associated with each segment on the seven-segment display are shown
in Figure 8. Note that the labeling of the segments on the second digit are
analogous to that of the first.

Figure 8: Letters associated with each segment

dip value # Exp.sgmnts(d1) Meas.sgmnts(d1) Exp.sgmnts(d2) Meas.sgmnts(d2)

100010 34 1111001 1100110 0110011 1001111

Table 2: First test of completed circuit

7

As shown in Table 2, neither of the digits were correct. Before checking the
code, I decided to make sure that the pin-out was correct, which it was. Then, I
went through the code for the DDDD module, which seemed to be okay. Finally,
I chose to test out some more numbers to see if that would yield any hints. I
started with 0, 1, 2, and 3. The results are displayed in Table 3.

dip value # Exp.sgmnts(d1) Meas.sgmnts(d1) Exp.sgmnts(d2) Meas.sgmnts(d2)

000000 00 1111110 0111111 1111110 0111111
000001 01 1111110 0000110 0110000 0111111
000010 02 1111110 1011011 1101101 0111111
000011 03 1111110 1001111 1111001 0111111

Table 3: Second test of completed circuit

These results were a lot more helpful. Since all of the Meas.sgmnts(d2)
values were the same, and all of the numbers contained a zero, Professor Bell
and I hypothesized that the digits were flipped. We reversed the order of the
digits by switching the bits in the anode output for a given state of the counter.
Now, anode will have the value ‘01’ when the nineteenth bit of a is 0 and ‘10’
when the nineteenth bit of a is 1. In Section 1, I explain why this yields the
correct result. The new results for the same four tests are shown in Table 4.

dip value # Exp.sgmnts(d1) Meas.sgmnts(d1) Exp.sgmnts(d2) Meas.sgmnts(d2)

000000 00 1111110 0111111 1111110 0111111
000001 01 1111110 0111111 0110000 0000110
000010 02 1111110 0111111 1101101 1011011
000011 03 1111110 0111111 1111001 1001111

Table 4: Third test of completed circuit

Pictures of the results summarized in Table 4 are shown in Figures 9-
12 below. From the ‘00’ test, Professor Bell and I concluded that segments
A and G were switched, and from the ‘01’, ‘02’, and ‘03’ tests, we concluded
that segments B and F were switched and segments C and E were switched.
From most significant bit to least significant bit, the sevenseg output is ordered
A through G, meaning sevenseg(6), for example, should be connected to A.
However, all of the cathode connections were reversed, that is, sevenseg(6) was
mapped to G, etc. After altering the pin-out, all of the previous tests worked,
along with numerous other tests, all of which are displayed in Table 5.

8

Figure 9: 00 test from Table 4 Figure 10: 01 test from Table 4

Figure 11: 02 test from Table 4 Figure 12: 03 test from Table 4

4 Reflection

This lab taught me that there are many creative ways to get more out of the
hardware that you have available to you. In this case, we constructed a circuit
that seems to output two digits simultaneously, whereas in reality, each digit
is just flashing on and off super fast. As a result, we only needed to use one
set of cathode pins on the seven-segment display, and by extension, only nine
pins on the FPGA (seven cathode plus two anode). Although using an extra
seven pins on the FPGA, corresponding to another seven cathode pins for a
second digit, may not seem like that big of a deal, suppose we wanted to use
ten seven-segment displays. Then, using our trick, we would only have to use
seventeen outputs as opposed to eighty, which is a big difference.

I’ve been struggling with some VHDL syntax, particularly when to use sig-
nals. Here is a brief of description of when to use them so that I can refer to it
in future projects:

9

dip value # Exp.sgmnts(d1) Meas.sgmnts(d1) Exp.sgmnts(d2) Meas.sgmnts(d2)

000000 00 1111110 1111110 1111110 1111110
000001 01 1111110 1111110 0110000 0110000
000010 02 1111110 1111110 1101101 1101101
000011 03 1111110 1111110 1111001 1111001
000100 04 1111110 1111110 0110011 0110011
000101 05 1111110 1111110 1011011 1011011
010000 16 0110000 0110000 1011111 1011111
010001 17 0110000 0110000 1110000 1110000
010010 18 0110000 0110000 1111111 1111111
010011 19 0110000 0110000 1111011 1111011
010100 20 1101101 1101101 1111110 1111110
011111 31 1111001 1111001 0110000 0110000
100000 32 1111001 1111001 1101101 1101101
100001 33 1111001 1111001 1111001 1111001
100010 34 1111001 1111001 0110011 0110011
100011 35 1111001 1111001 1011011 1011011
111100 60 1111110 1111110 1111110 1111110
111101 61 1011111 1011111 0110000 0110000
111110 62 1011111 1011111 1101101 1101101
111111 63 1011111 1011111 1111001 1111001

Table 5: Final test of completed circuit

When you instantiate a module, its inputs/outputs can be mapped to the
inputs/outputs of the higher-level module, or to a signal that the higher-level
module will use in its logic. For example, our top-level module instantiated the
DDDD module, which has input count, and outputs digit0 and digit1. We want
count to be directly mapped to the input of our top-level module, dip value, but
we want digit0 and digit1 to be mapped to signals since we want to use them
in combinational logic that will eventually assign something to the outputs of
our top-level module.

The lab took ∼5 hours to complete.

List of Tables

1 Testing of counter period . 7
2 First test of completed circuit . 7
3 Second test of completed circuit 8
4 Third test of completed circuit 8
5 Final test of completed circuit . 10

10

5 VHDL code

5.1 Top Module

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

entity lab6 is

port(

dip_value : in unsigned (5 downto 0); -- value set on dip switch

sevenseg : out std_logic_vector(6 downto 0); -- configuration of sevenseg

anode : out std_logic_vector(1 downto 0) -- configuration of anode pins

);

end;

architecture synth of lab6 is

component HSOSC is

generic(

CLKHF_DIV : String := "0b00"

);

port(

CLKHFPU : in std_logic := ’1’;

CLKHFEN : in std_logic := ’1’;

CLKHF : out std_logic := ’X’

);

end component;

component dddd is

port(

count : in unsigned(5 downto 0);

digit0 : out std_logic_vector(6 downto 0);

digit1 : out std_logic_vector(6 downto 0)

);

end component;

signal a : unsigned (25 downto 0) := "00000000000000000000000000";

signal clk : std_logic;

signal bit_iszero : std_logic := ’1’;

signal bit_isone : std_logic := ’0’;

signal digit0_select : std_logic_vector(6 downto 0);

signal digit1_select : std_logic_vector(6 downto 0);

begin

HSOSC_inst : HSOSC

port map (

CLKHF => clk,

11

CLKHFPU => ’1’,

CLKHFEN => ’1’

);

dddd_inst : dddd

port map(

count => dip_value,

digit0 => digit0_select,

digit1 => digit1_select

);

process (clk) begin

if rising_edge(clk) then

a <= a + 1;

if (a(19) = ’0’) then

bit_iszero <= ’1’;

bit_isone <= ’0’;

else

bit_isone <= ’1’;

bit_iszero <= ’0’;

end if;

end if;

end process;

sevenseg <= digit0_select when bit_iszero = ’1’ else digit1_select;

anode <= "01" when bit_iszero = ’1’ else "10";

end;

5.2 DDDD Module

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

entity dddd is

port(

count : in unsigned(5 downto 0);

digit0 : out std_logic_vector(6 downto 0);

digit1 : out std_logic_vector(6 downto 0)

);

end;

architecture synth of dddd is

component sevenseg is

port(

S : in unsigned(3 downto 0);

segments : out std_logic_vector(6 downto 0)

12

);

end component;

signal digit0_bcd : unsigned (3 downto 0);

signal digit1_bcd : unsigned (3 downto 0);

signal intrm : unsigned (12 downto 0); -- intermediate term is 13 bit unsigned

begin

sevenseg_inst0 : sevenseg

port map (

S => digit0_bcd,

segments => digit0

);

sevenseg_inst1 : sevenseg

port map (

S => digit1_bcd,

segments => digit1

);

-- mod 10 to find ones place

digit0_bcd <= count mod 4d"10"; -- ones place is 4 bit unsigned

-- multiply by 52 and divide by 512 to find tens place

intrm <= count * 7d"52";

digit1_bcd <= intrm(12 downto 9); -- tens place is 4 bit unsigned

end;

5.3 Seven-segment Module

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

entity sevenseg is

port(

S : in unsigned(3 downto 0);

segments : out std_logic_vector(6 downto 0)

);

end sevenseg;

architecture synth of sevenseg is

begin

process(all) begin

case S is

when X"0" => segments <= "0000001";

when X"1" => segments <= "1001111";

when X"2" => segments <= "0010010";

when X"3" => segments <= "0000110";

when X"4" => segments <= "1001100";

when X"5" => segments <= "0100100";

13

when X"6" => segments <= "0100000";

when X"7" => segments <= "0001111";

when X"8" => segments <= "0000000";

when X"9" => segments <= "0000100";

when X"A" => segments <= "0001000";

when X"B" => segments <= "1100000";

when X"C" => segments <= "0110001";

when X"D" => segments <= "1000010";

when X"E" => segments <= "0110000";

when X"F" => segments <= "0111000";

when others => segments <= "1111111";

end case;

end process;

end;

14

