
Using memory

Toki Nishikawa

November 8 2022
6-8pm Tuesday lab with Kim Nguyen/Nick Boudreau

The objective of the lab is to create a blinking animation on a seven-segment
display.

1



1 Testing

Initially, none of the LEDs on the seven-segment display were turning on. I
checked the code associated with the sevenseg output of the top-level module
and found that the rom out output of the ROM module was being port-mapped
to a signal that I had previously decided not to use. However, there were still
no lights after this change. I decided to check the voltages of each of the seven
segments to ensure that they were all being set high as opposed to floating. They
were all set high. I suspected that the ‘when others’ case in the ROM module
was constantly being triggered since this sets rom out to ‘1111111’. Thus, I
changed the ‘when others’ case to set rom out to ‘0000000’ instead. No lights.
Now, I was very puzzled. How could all seven segments be high when that case
doesn’t exist?

I decided to check the voltages of the anode pins - they were also both high.
Again, there is no case were the anode pins are both high, and so this was very
confusing. My plan then was to see if I could output any specified value. I
deleted the logic associated with the anode pins and set the rom anode output
in the ROM module, which is port-mapped to the anode output in the top-level
module, to ‘01’. Both were still high. Then, I deleted rom anode from the ROM
module and set anode to ‘01’. Still, both were high. I was very, very confused. I
tried outputting logic values to other random pins on the FPGA, and they were
always high. Time to call for help. It took Professor Bell around five minutes
to realize that I was uploading the wrong file to my FPGA.

Now that I was uploading the correct file, I was getting lights. However, only
segment C on digit 1 was turned on, and nothing was changing. A diagram of
the letters associated with each segment is shown in Figure 1. I hit reset, and it
started flashing between ‘-’, corresponding to ‘1111110’, and ‘8’, corresponding
to ‘0000000’, on digit 1. It seemed that the display was alternating between the
first and last case, ‘00000’ and ‘others’. Note that, at this point in time, the
‘others’ case was still set to ‘0000000’. I checked the sensitivity list for the first
process in the ROM module and saw that it was ‘rom clock’. Since we want
rom out to update whenever the address changes, it should be ‘adr’ or ‘all’.
However, the output was the same after this fix.

Figure 1: Letters associated with each segment

2



Next, I checked my counter module to ensure that its output count was
incrementing correctly. The initial logic is displayed below:

process (counter_clk) begin

if rising_edge(counter_clk) then

if (counter_reset = ’0’) then

count <= "00000";

else

a <= a + 1;

if (a(25) = ’1’) then

count <= count + 1;

else

count <= count;

end if;

end if;

end if;

end process;

This code increments count when a(25) is 1, and resets count when a push-
button is pressed. Note that, in this code, a is a signal with 26 bits. It’s evident
what the issue is: count will not increment for a while until a(25) becomes 1, at
which point it will increment super fast on every rising edge of the clock until
a rolls over. The correct way to implement the counter is shown below:

process (counter_clk) begin

if rising_edge(counter_clk) then

if (counter_reset = ’0’) then

a <= "0000000000000000000000000000";

else

a <= a + 1;

count(4) <= a(27);

count(3) <= a(26);

count(2) <= a(25);

count(1) <= a(24);

count(0) <= a(23);

end if;

end if;

end process;

In contrast, this code assigns the five most significant bits of a to the five
bits in count, incrementing a on every rising edge of the clock. When the reset
button is pressed, a is reset rather than count. In this code, a is a signal with
28 bits so that the segments switch at a nice speed. Working through the logic
in your head, you should be able to visualize how the code slowly and steadily
increments count. Since the cases only go up to a count of ‘10000’, there is some
time before the animation will reset itself. This is why I chose to include a reset
button.

3



After rewriting the counter logic, I was finally seeing an animation. The first
problem I noticed was that the digits were flipped. That was easy - I just had
to change the order of the bits that I was assigning to rom anode. The second
problem was that the animation was skipping the first segment displayed on
the second digit. This was clearly due to an error in the logic in the ROM
module that assigns the appropriate digit to each case. Originally, the first if
statement, which tells rom anode to light up digit 1, was executed when ‘adr
< 9’. However, that includes the case ‘01000’, which corresponds to the first
segment displayed on the second digit. Thus, I changed it to ‘adr < 8’, and
everything worked.

2 VHDL code

2.1 Top Module

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

entity lab7 is

port(

reset : in std_logic;

sevenseg : out std_logic_vector(6 downto 0); -- configuration of sevenseg

anode : out std_logic_vector(1 downto 0) := "01" -- configuration of anode pins

);

end;

architecture synth of lab7 is

signal adr_temp : unsigned(4 downto 0);

signal clk : std_logic;

component HSOSC is

generic(

CLKHF_DIV : String := "0b00"

);

port(

CLKHFPU : in std_logic := ’X’;

CLKHFEN : in std_logic := ’X’;

CLKHF : out std_logic := ’X’

);

end component;

component counter is

4



port(

counter_reset : in std_logic;

counter_clk : in std_logic;

count : out unsigned(4 downto 0)

);

end component;

component rom is

port(

adr : in unsigned(4 downto 0);

rom_clk : in std_logic;

rom_out : out std_logic_vector(6 downto 0);

rom_anode : out std_logic_vector(1 downto 0)

);

end component;

begin

HSOSC_inst : HSOSC

port map (

CLKHF => clk,

CLKHFPU => ’1’,

CLKHFEN => ’1’

);

counter_inst : counter

port map(

counter_reset => reset,

counter_clk => clk,

count => adr_temp

);

rom_inst : rom

port map(

adr => adr_temp,

rom_clk => clk,

rom_out => sevenseg,

rom_anode => anode

);

end;

5



2.2 Counter Module

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

entity counter is

port(

counter_reset : in std_logic := ’1’;

counter_clk : in std_logic;

count : out unsigned(4 downto 0) := "00000"

);

end;

architecture synth of counter is

signal a : unsigned (27 downto 0) := "0000000000000000000000000000";

begin

process (counter_clk) begin

if rising_edge(counter_clk) then

if (counter_reset = ’0’) then

a <= "0000000000000000000000000000";

else

a <= a + 1;

count(4) <= a(27);

count(3) <= a(26);

count(2) <= a(25);

count(1) <= a(24);

count(0) <= a(23);

end if;

end if;

end process;

end;

2.3 ROM Module

library IEEE;

use IEEE.std_logic_1164.all;

use IEEE.numeric_std.all;

entity rom is

port(

adr : in unsigned(4 downto 0);

rom_clk : in std_logic;

6



rom_out : out std_logic_vector(6 downto 0);

rom_anode : out std_logic_vector(1 downto 0)

);

end rom;

architecture synth of rom is

begin

process(all) begin

case adr is

when "00000" => rom_out <= "1111110";

when "00001" => rom_out <= "1111101";

when "00010" => rom_out <= "0111111";

when "00011" => rom_out <= "1011111";

when "00100" => rom_out <= "1101111";

when "00101" => rom_out <= "1110111";

when "00110" => rom_out <= "1111011";

when "00111" => rom_out <= "1111110";

when "01000" => rom_out <= "1111110";

when "01001" => rom_out <= "1011111";

when "01010" => rom_out <= "0111111";

when "01011" => rom_out <= "0111111";

when "01100" => rom_out <= "1111101";

when "01101" => rom_out <= "1111011";

when "01110" => rom_out <= "1110111";

when "01111" => rom_out <= "1101111";

when "10000" => rom_out <= "1111110";

when others => rom_out <= "1111111";

end case;

end process;

process (rom_clk) begin

if rising_edge(rom_clk) then

if (adr < 8) then -- when count is less than 01000 (9), we want the first digit on

rom_anode <= "01";

else

rom_anode <= "10";

end if;

end if;

end process;

end;

7


