
ES4 Final Project Write-Up

Daniel Butka
Mira Jain

Carla Byarugaba
Toki Nishikawa

Watch a video here
https://youtu.be/HZ9PClgV-0Y

https://youtu.be/HZ9PClgV-0Y


1. Overview:
In this document, we describe the design and operation of a reaction game built
using the iCE40 FPGA. The user is meant to watch a repeating animation and press
a button at a specific point in the animation to score points. The animation consists
of 1 segment of a 7 segment display going in a clockwise loop. The user could
adjust the difficulty between four different animation speeds using two switches.
We used one digit of a seven segment display to show the user a repeating
animation, and the other digit to display their score. We used a push button switch
to collect user input. The score is represented by a hexadecimal digit which
automatically overflows from F (15) to 0. Additionally, the score can be reset to 0
at any time by pressing a different button.
The major components are shown in Figure 1:
● The Top Level module: (takes user’s inputs, gives outputs)

- Increments the animation frame’s address at the speed of the selected
difficulty

- Stores, resets, increments the score when appropriate
- Tells the 7 segment display how to show the animation and score

● HSOSC: creates the clock signal for the top level and ROM
● ROM: converts the current frame address into a data signal
● Sevenseg: converts the ROM’s data signal into a signal that powers certain

pins of the 7 segment display for the animation
● Score7seg: converts the score into a signal that powers pins of the display

for the score

In reference to the above photo, everything starts running as soon as power is
provided to the circuit. The left button is the one used for the game, and the right
one resets the score. The two rightmost dip switches control the difficulty, and the
other switches do nothing.



Figure 1: High level layout

Note: In the diagram, wires going into the top or left of a component indicate
inputs of the component. Wires going out of the bottom or right of a component
indicate outputs.

2. Technical description:

1. Animation Counters
The main component of our project was the animation. The animation was
made up of 6 frames stored in memory and addressed with 4 bit addresses.
Although we only needed 3 bit addresses for the number of frames we had,
we decided to use longer addresses so that we could add more frames if
necessary. To display the frames, we used four (one for each difficulty)
counters in the top level module, each incrementing on each rising edge of
the built in HSOSC clock. The counters only increment if the button is not
pressed, causing the animation to freeze while the button is pressed. The



“easy” difficulty counter had 27 bits, and each successive counter had 1 less
bit. The HSOSC clock runs at 48 MHz, so by selecting one of the 4
differently sized counters (controlled by the 2 difficulty switches), we were
able to display our frames at different rates, speeding up or slowing down
the animation. The frame address was the 4 most significant bits of the
selected counter. The higher frequencies were generated by using smaller
counters for the frame address, and the lower frequencies were generated
using the larger counters. The speeds used are shown in Table 1.1.
Because we only had 6 (0 to 5) frames, each counter resets to 0 when the
frame address becomes 6, causing the animation to immediately restart after
the last frame.

Table 1.1

Difficulty Bits used as
address

Calculation FPS

Easy 26 down to 23 6

Medium 25 down to 22 12

Hard 24 down to 21 24

Impossible 23 down to 20 48

2. Score display / seven seg
One feature of our game is that it displays the animation and scoreboard
concurrently on the same seven-segment display. We achieved this using a 19-bit
counter that incremented on every rising edge of the clock. When the 19th bit of
the counter is ‘0’, the first digit is turned on, and we display the animation (by
assigning the output_T signal to be the animation’s 7 segment instruction). In
contrast, when the bit is ‘1’, the second digit is turned on, and we display the score

https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7B48%5Ctext%7B%20MHz%7D%7D%7B2%5E%7B23%7D%7D%20%3D%20%5Cfrac%7B3%20%5Ctimes%202%5E4%20%5Ctimes%202%5E%7B20%7D%5Ctext%7B%20Hz%7D%7D%7B2%5E%7B23%7D%7D%3D3(2)%20%5Ctext%7B%20Hz%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7B48%5Ctext%7B%20MHz%7D%7D%7B2%5E%7B22%7D%7D%20%3D%20%5Cfrac%7B3%20%5Ctimes%202%5E4%20%5Ctimes%202%5E%7B20%7D%5Ctext%7B%20Hz%7D%7D%7B2%5E%7B22%7D%7D%3D3(2%5E2)%20%5Ctext%7B%20Hz%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7B48%5Ctext%7B%20MHz%7D%7D%7B2%5E%7B21%7D%7D%20%3D%20%5Cfrac%7B3%20%5Ctimes%202%5E4%20%5Ctimes%202%5E%7B20%7D%5Ctext%7B%20Hz%7D%7D%7B2%5E%7B21%7D%7D%3D3(2%5E3)%20%5Ctext%7B%20Hz%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cfrac%7B48%5Ctext%7B%20MHz%7D%7D%7B2%5E%7B20%7D%7D%20%3D%20%5Cfrac%7B3%20%5Ctimes%202%5E4%20%5Ctimes%202%5E%7B20%7D%5Ctext%7B%20Hz%7D%7D%7B2%5E%7B20%7D%7D%3D3(2%5E4)%20%5Ctext%7B%20Hz%7D#0


(by assigning the output_T signal to be the score’s instruction). By selecting a
counter size of 19 bits, the display alternates between the two digits fast enough
that our eyes cannot perceive the flashing. It alternates on the display because the
19th bit is sent to one anode on the display, and the opposite of the signal is sent to
the other.

3. User pressing button (rising edge detection)
Perhaps the most challenging part of the project was correctly incrementing the
score with every button press. The idea was that on a clock rising edge, if the
button signal is low (ie, a falling edge has occurred from somebody pressing it)
while the frame address has a certain value, a counter holding the score will
increment. However, we will explain later a process that must occur before the
increment. To implement the button falling edge, we implemented the state
machine shown in Figure 2. The states S1, S2, S3, and S4 are assigned the binary
encodings ‘11’, ‘01’, ‘00’, and ‘10’, respectively. The variable ‘b’ represents the
logic value being returned by the pushbutton – this value is LOW when the button
is pressed, since pressing the button connects the pin to ground, and HIGH
otherwise. Thus, the S1 represents the default state where the button has not been
pressed. If the next ‘b’ input is HIGH, we stay in S1, but if it is LOW, we move to
S2. In this state machine, S2 is the only state where we increment the score. As you
can see, regardless of the next ‘b’ input, if we are currently in S2, we must leave S2
before we can return to S2 to increment the score another time. As a result, the
state machine yields logic that increments the score a single time upon pressing the
button. The idea for this part came from the “rising edge detector” assignment on
VHDLweb, although it is more accurate to call this a falling edge detector for the
button.



Figure 2: State machine used to identify a button press.

In regards to hardware, this is implemented using a shift register with two
flip-flops as shown in Figure 3. Initially, a series of 1’s are passed through the
flip-flops, resembling the S1 state. Then, upon the press of the button, a ‘0’ will be
passed into the first flip-flop on the rising edge of the clock, changing the state to
S2. On the next rising edge of the clock, either a ‘1’ or another ‘0’ will be passed in
depending on whether the button is still being pressed or not. Either way, the state
will change to S3 or S4, meaning that the score will not be incremented another
time.

Figure 3: Hardware used to identify a button press.

In theory, this hardware should correctly increment the score every time the
button is pressed – however, this is not what happens as hardware is seldom



perfect. Through careful analysis using an oscilloscope, we discovered that the
pushbutton bounces with every push; that is, it makes multiple distinct connections
with ground during the time it is pushed down. This is not ideal as we have
designed a system that increments the score every distinct connection with ground.
We must introduce some debouncing mechanism.

As it stands, the current design will cause the score to act unpredictably as
an undefined number of ground connections will be made with every push of the
button. In order to prevent this, we use a counter that will begin once the first
ground connection has been detected. The counter will increment on every rising
edge of the clock until a specified value has been reached, at which point the score
will increment, the counter will reset, and if reentered, the S2 state will be allowed
to trigger the counter again. As a result, if multiple ground connections occur after
the initial ground connection, they are likely to take place while the counter is
running and thus unlikely to increment the score. With that said, if the user holds
down the button for long enough – ie, longer than the length of the counter –
another ground connection could occur, meaning the score will increment more
than once. However, this would require the user to hold down the button for an
abnormally large amount of time.

One may question: why not just increase the length of the counter? Although
increasing the counter reduces the odds of the score incrementing by more than a
single point, it also increases the time between the user pushing the button and the
score updating. Thus, lengthy counters would mean that the score may increment
as long as seconds after the button has been pushed, which doesn’t make for the
greatest user experience. We used a counter of 24 bits, which seemed to provide a
good balance between the accuracy of the scoreboard and the time it takes to
update.

4. Difficulty
Table 1.2

Switch input Difficulty FPS Length of animation

00 Easy 6 1 second

01 Medium 12 0.5 seconds

10 Hard 24 0.25 seconds



11 Impossible 48 0.125 seconds

5. Sevenseg and Score7seg

Both of these components create the 7 bit signals for the 7 segment display to
directly “read”. In each signal, a ‘0’ instructs a certain segment to be on, and a ‘1’
instructs it to be off. Using a series of when else statements, each of these
components outputs one of these 7 bit signals based on a 4 bit data input. For
score7seg, this input was the number of the score, in binary.

We created a new module for seven seg, but the values needed for seven seg were
taken from previous labs. We decided to use one digit and show the value using
hexadecimal to show as many different values as possible in a limited space, so we
did not change anything from that lab.

Table 1.3: Frames of the animation

Frame address data 7 segment
instruction

Lit segment

0000 0000 0111111 Topmost (A)

0001 0001 1011111 Top right (B)

0010 0010 1101111 Bottom right (C)

0011 0011 1110111 Bottom most (D)

0100 0100 1111011 Bottom left (E)

0101 0101 1111101 Top left (F)

6. ROM

Our project implemented a ROM module to store the data for the animation
frames. The ROM entity has an architecture called "sim," which contains a process
that specifies the behavior of the ROM.



The process waits for a rising edge on the clock signal and then decodes the value
of the addr input to determine the data that should be output on the frame output.
Since the address came from a counter, the address is the number of the frame in
the order of the animation. The data is stored in a signal called "data," which is an
unsigned 4-bit value. The ROM entity also includes a component called
"sevenseg," which has two ports: an unsigned 4-bit input (S) and a 7-bit
std_logic_vector output (segments).

The ROM architecture maps the "data" signal to the "S" input of the sevenseg
component and the "segments" output of the sevenseg component to the "frame"
output of the ROM entity. When the clock signal transitions from low to high, the
process determines the value of "data" based on the value of "addr," and the value
of "data" is then passed to the sevenseg component to produce the output on the
"frame" output.

Since each frame of our particular animation is unique, the ROM was actually
redundant. This is because the address “0001” just yields the same data signal
“0001” and so on. However, it was kept in case we wanted a different animation.

Table 1.4: Examples of displayed score

score 7 segment instruction Displayed character

0011 0000110 3

1010 0001000 A

1011 1100000 b



3. Results:

Here are some other photos of the project:



As stated, the main bug is that the button sometimes detects more than one press
when it is actually only pressed once. The solution we implemented prevents this,
but not if the button is held down for too long.

Bits processed per clock cycle: 191
Frames of animation: 6
Difficulty settings: 4

If we had more time, we could have implemented different animations that the user
could choose from. To do this, we could use the unused dip switches as the
controls to send a signal to select the animation. This signal would be an input to
the ROM, which would be a condition for mapping the address to the data signal in
a different way. If we wanted an animation with a different number of total frames,
we would have to handle resetting the counters differently.

Another addition to this project could be to include more seven-segment displays
to create more complex animations. For example, if we had an array of
seven-segment displays, we could create animations that were continuous between
them, and we could use separate displays for the score so that the animations could
flash between the two digits of each display.

Furthermore, we discussed the possibility of making it a two-player game. In this
case, there would be multiple scoreboards and buttons (one for each competitor).
They could compete on different speeds/patterns where each speed/pattern
combination would play out twice. We could also count the number of incorrect
button presses so that our game measures accuracy.

4. Reflection:

For this project, we built upon the work that we had completed in lab 7.

We were able to successfully implement a counter that would track the number of
times a button was pressed. However, we encountered an issue where the counter
would occasionally jump up by two or more when the button was pressed too
quickly.



To troubleshoot this issue, we experimented with adjusting the delay between
button presses and found that increasing the delay helped to reduce the frequency
of the counter jumping up by two or more.

We also connected an LED to the score and noticed that the LED remained on
when the score reached 29 or higher. This seemed to be an issue with the code, as
the LED should only turn on when the score reaches a certain threshold.

Overall, this project provided an opportunity for us to build upon previous work
and troubleshoot any issues that arose. While we were able to successfully
implement the counter and LED, there were still some issues that needed to be
addressed in order to improve the overall functionality of the project.

5. Work division:

Dan:
The core of the animation implementation in our game was built upon my VHDL
code from lab 7, which only utilized one of the display's digits. This code included
a counter that was used to increment the animation address, a case statement to
implement a read-only memory (ROM), and when/else statements for the 7
segment instructions for the two sevenseg modules. In addition to this, I also
implemented four counters and the difficulty selection logic. These elements were
crucial for ensuring that the animation functioned correctly and that the player
could customize the difficulty of the game.

In order to allow the player to interact with the game, I also implemented the
button falling edge detector. This was necessary for detecting when the player had
correctly pressed the button, and for triggering the appropriate response in the
game.

Carla:



I took on the task of attempting to implement VHDL code from lab 7 into our
game, using it as a foundation to build upon. My goal was to create an animation, a
way to check if the user correctly presses the button, a scoreboard that increments
every time the player scores, and an input to increase difficulty. In order to achieve
this, I had to have a deep understanding of the VHDL language and be able to
apply my knowledge to the specific requirements of the game.

For the scoreboard, I drew upon my work from a previous lab where we focused on
creating a dual digit display. This required me to review and build upon the
concepts that I had learned in that lab. The animation, on the other hand, utilized
applications from Lab 7, so I had to familiarize myself with those as well. Overall,
the process of implementing the VHDL code into the game was challenging but
rewarding, as it allowed me to showcase my skills and knowledge in the field.

Toki:
In regards to the code, I was responsible for two sections of the top module. More
specifically, I coded the mechanism that allows both digits on the seven-segment
display to be on simultaneously (well, appear to be on simultaneously). Moreover,
I coded the debouncing mechanism described in section 3 of the technical
description. Dan and I spent many hours debugging the code and physical circuit.

Finally, I soldered everything using protoboards and laser cut a box to hide the
electronics – the final product is shown in the results section.

Mira:
I worked on the top level module animation code. I made sure that the counter
functioned correctly and would show the frames at the speed selected by the user. I
created the code that would reset the counter at the right frame and the code that
would generate the counter required for each difficulty. I also helped other
members with their parts of the code.

I also coded a more complex animation to work with two digits, but we did not
have a chance to utilize this in the final project because we decided to use only one
seven segment display.


