
Binned Maximum Likelihood Fit
A review of the method of maximum likelihood applied to binned data

Toki Nishikawa

September 2021

School of Engineering

Supervisor: Vince Croft

Contents

1 Theory 1

2 Examples in PyTorch 2

2.1 Single histogram fit (with arbitrary data) . 2

2.2 Single histogram fit (with data sampled from an exponential distribution) 4

i

1 Theory

Suppose we have N measurements xi, ..., xN in the range x0 ≤ xi < xh. Let f(x;θ) be proportional to the assumed

probability density function for our N measurements where θ represents our fit parameters and
∫ xh

x0
f(x;θ) dx ≡

A(θ). Let’s assign our data to M bins, each with the same bin-width h ≡ xh−x0

M . The measured contents of each

bin b (b = 1...M) are described by Equation 1.

nb =

∫ x0+hb

x0+h(b−1)

N∑
i=1

δ(x− xi)dx (1)

Want to see an example of Equation 1?

Equation 1 can be expanded to the following form.

nb =
∫ x0+hb

x0+h(b−1)
[δ(x− x1) + δ(x− x2) + δ(x− x3) + δ(x− x4)]dx

Suppose we have N = 4 measurements – let’s say x = [x1, x2, x3, x4] = [1, 2, 3, 4] - and we assign our data to M = 2

bins, each with bin width h ≡ xh−x0

M = 4−1
2 = 3

2 . For the first bin b = 1, we get retrieve the following.

n1 =
∫ 1+ 3

2 (1)=
5
2

1+ 3
2 (1−1)=1

[δ(x− 1) + δ(x− 2) + δ(x− 3) + δ(x− 4)]dx

=
∫ 5

2

1
δ(x− 1)dx+

∫ 5
2

1
δ(x− 2)dx+

∫ 5
2

1
δ(x− 3)dx+

∫ 5
2

1
δ(x− 4)dx

= 1 + 1 + 0 + 0

= 2

Thus, the measured contents for the first bin would be n1 = 2. This makes sense because the first bin should include

all the measurements which fall between 1 and 5
2 , and two of our four measurements do this, namely x1 = 1 and

x2 = 2.

The fit contents, ie the contents we will eventually fit to our data, are described by Equation 2.

fb(θ) =

∫ x0+hb

x0+h(b−1)

f(x;θ)dx (2)

In this case, f(x;θ) represents a histogram that is proportional to the assumed probability density function for our

data. We see that f1(θ) =
∫ x0+h

x0
f(x;θ)dx is just the area of the first bar in the histogram which is proportional to

the number of events in that bin. The actual number of events in the bin would be f1(θ)/h (e.g. if the bin width

was h = 0.1 and there were three events in the bin, f1(θ) = 0.3 and f1(θ)/h = 3). It is only important that fb(θ)

is proportional to the number of events in bin b - after all, we are fitting this histogram to our data.

Let’s assume that the measured contents in each bin nb are Poisson-distributed, i.e. the probability density function

for nb is defined as f(nb; fb) =
f
nb
b

e−fb

nb!
where fb ≡ fb(θ). If we just consider the first bin, f(n1, f1) is the probability

of n1 given some configuration of f1. It becomes evident that, by multiplying these probabilities for each bin, we

will retrieve the likelihood function. Thus, we take the product of the individual p.d.f.s for each bin.

L(θ) =

M∏
b=1

f(nb; fb) =

M∏
b=1

fnb

b e−fb

nb!
(3)

1

It is more convenient to work with the negative log of the likelihood function.

F (θ) ≡ − lnL(θ) = −
M∑
b=1

(nb ln fb − fb − lnnb!) (4)

Recognizing that
∑M

b=1 fb =
∫ xh

x0
f(x;θ) dx = A(θ) and

∑M
b=1 lnnb! is just an additive constant, we can simplify

our expression to the following.

F (θ) = −
M∑
b=1

nb ln fb +A(θ) (5)

2 Examples in PyTorch

2.1 Single histogram fit (with arbitrary data)

Let’s start with the simplest example. Suppose we have 15 measurements assigned to 5 bins of equal width between

0 and 1 – the associated histogram is displayed in Figure 1. We choose to fit the histogram shown in Figure 2 to

our data. Notice that the fit histogram has exactly double the measured bin contents. It is evident that multiplying

our fit histogram by a factor of 0.5 will return the data histogram. Let’s see if we can retrieve this result using

PyTorch autograd and the mathematics described in the first section.

Figure 1: Data histogram Figure 2: Fit histogram

2

Code:

generates the measured bin contents. these values were chosen arbitrarily.

dataHist = torch.tensor([[5.],[4.],[3],[2],[1.]])

generates the fit bin contents. these values are double the measured bin contents.

hist1 = torch.tensor([[10.],[8.],[6],[4],[2.]])

initializes our paramter p.

p = Variable(torch.rand(1), requires_grad=True)

model: our model takes the measured bin contents and fit bin contents as inputs

and outputs the negative log likelihood using the function we derived earlier.

class MLE(nn.Module):

def __init__(self, dataHist, hist1):

super(MLE, self).__init__()

self.nll = lambda p: -((dataHist*torch.log(hist1*p)).sum() - torch.sum(hist1*p))

def forward(self, p):

out = self.nll(p)

return out

model = MLE(dataHist, hist1)

initializes our optimizer. in this example, we implement adam algorithm.

optimizer = torch.optim.Adam([p], lr=0.1)

training loop: every iteration will update our fit parameter to a value that

lowers the negative log likelihood function.

for t in range(1000):

optimizer.zero_grad()

NLL = model(p)

NLL.backward()

optimizer.step()

if t % 200 == 0:

print(f’epoch: {t}, loss: {NLL.item():.4f}, p: {p.detach().numpy()}’)

if t == 999:

print(f’epoch: {t}, loss: {NLL.item():.4f}, p: {p.detach().numpy()}’)

outputs our results.

bins = np.array([0,1,2,3,4,5])

bin_centres = bins[:-1]+np.diff(bins)/2

plt.scatter(bin_centres, dataHist.detach().numpy(), label=’data’)

plt.step(bin_centres, hist1.detach().numpy()*p.detach().numpy(), where=’mid’, label=’fit’)

plt.legend()

print (’\n’)

plt.show()

3

The output of this code is shown in Figure 3.

Figure 3: Fitted histogram

Our neural network has navigated us to the minimum of our negative log loss function and it appears that the

product of the fit bin contents and 0.5 yields the best fit for our data. This is the result we expected.

2.2 Single histogram fit (with data sampled from an exponential distribution)

Let’s move on to a more complicated example. Suppose we have 50 measurements assigned to 8 bins of equal width

between 0 and 1 – the associated histogram is displayed in Figure 4. At this point, we hypothesize the probability

density function that models our N measurements. In this case, the data appears to have been sampled from an

exponential distribution (that’s because it was!). As a result, we want to create a fit histogram which models an

exponential distribution. It is important to note that it is the task of the researcher to identify the p.d.f. from which

the fit histogram will sample its data. In this example, I have generated a somewhat arbitrary histogram (shown in

Figure 5) to fit to our data instead. The bin contents are as follows: [13],[11],[9],[7],[5],[4],[3],[1]. Although these

numbers reflect the downward trend in the data, they were not sampled from any particular probability density

function.

Figure 4: Data histogram Figure 5: Fit histogram

4

Code:

generates 50 samples from an exponential distribution with rate = 5. in

reality, we wouldn’t know the p.d.f. from which our data is sampled from.

data = Exponential(torch.tensor([5.0])).sample().view(1,1)

for s in range (49):

value = Exponential(torch.tensor([5.0])).sample().view(1,1)

data = torch.cat((data, value), 0)

retrieves the measured bin contents.

dataHist = torch.histc(data, bins=8, min=0, max=1).view(8,1)

generates the fit bin contents. these values were chosen arbitrarily.

hist1 = torch.tensor([[13.],[11.],[9],[7],[5.],[4.],[3.],[1.]])

initialize our paramter p.

p = Variable(torch.rand(1), requires_grad=True)

model: our model takes the measured bin contents and fit bin contents as inputs

and outputs the negative log likelihood using the function derived earlier.

class MLE(nn.Module):

def __init__(self, dataHist, hist1):

super(MLE, self).__init__()

self.nll = lambda p: -((dataHist*torch.log(hist1*p)).sum() - torch.sum(hist1*p))

def forward(self, p):

out = self.nll(p)

return out

model = MLE(dataHist, hist1)

initializes our optimizer. in this example, we implement adam algorithm.

optimizer = torch.optim.Adam([p], lr=0.1)

training loop: every iteration will update our fit parameter to a value that

lowers the negative log likelihood function.

for t in range(1000):

optimizer.zero_grad()

NLL = model(p)

NLL.backward()

optimizer.step()

if t % 200 == 0:

print(f’epoch: {t}, loss: {NLL.item():.4f}, p: {p.detach().numpy()}’)

5

outputs our results.

bins = np.array([0,1,2,3,4,5,6,7,8])

bin_centres = bins[:-1]+np.diff(bins)/2

plt.scatter(bin_centres, dataHist.detach().numpy(), label=’data’)

plt.step(bin_centres, hist1.detach().numpy()*p.detach().numpy(), where=’mid’, label=’fit’)

plt.legend()

print (’\n’)

plt.show()

The output of this code is shown in Figure 6.

Figure 6: Fitted histogram

Our neural network has navigated us to the minimum of our negative log loss function and it appears that the

product of the fit bin contents and 0.9245284 yields the best fit for our data.

6

