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1 Introduction

In 1687, Newton proposed his law of universal gravitation, which states that two spherical objects
with masses m and M are mutually attracted by a force F that acts along the line connecting their
centers. This law is described by the following equation

F = G
mM

r2
(1)

where r represents the distance between the centers of the spheres and G is a universal constant.
Obtaining a value for G experimentally can be quite challenging as it requires accurately measuring
the force of attraction between two known masses, and in a lab setting, these forces are minuscule.

Henry Cavendish achieved the first measurement of G in 1797 using a torsional pendulum similar
to the one we will use in our experiment. As shown in Figure 1, two small spheres of equal mass, A
and B, were placed on opposite ends of a beam, which was suspended from its center, C, by a wire.
Two larger spheres of equal mass, P and Q, were positioned in the horizontal plane as indicated by
the illustration.

Figure 1: The Cavendish balance

The gravitational attraction between each smaller sphere and its adjacent larger sphere created
a torque around point C, causing a twist in the wire. Cavendish accurately measured the magnitude
of the twist by reflecting light off a mirror attached to the beam and observing the position of the
reflected light on the wall.

The wire and the beam form a torsional pendulum. In the absence of external torque, the
pendulum will unwind to an equilibrium orientation θ0, where the wire experiences no internal
rotational stress. With that said, external disturbances are unavoidable, and the pendulum will
never be exactly stationary. A small perturbation from equilibrium will exert a restoring torque τ
given by the equation

τ = −β(θ − θ0) (2)

where β is a constant determined by the properties of the wire. It is evident from Equation
2 that τ is proportional to ∆θ, indicating that the period T is independent of the pendulum’s
amplitude.
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In the presence of an external torque τext, the torsional pendulum will find a new equilibrium
position θ at which the total torque is now zero, or

τext − β(θ − θ0) = 0 (3)

To calculate the strength of the gravitational force from this apparatus, Cavendish needed to
know the torsion constant β. However, he was unable to identify β through calibration with a known
torque since the wire had too small a torsional strength. Instead, Cavendish determined β by timing
the oscillations due to random external disturbances.

2 Experimental Setup

We use a compact version of the Cavendish balance from TEL-Atomic, shown in Figure 2, to
measure the gravitational constant. This torsional pendulum is an aluminum beam with two small
lead spheres attached to either end. The beam is suspended at its center by a fine tungsten wire
with a diameter of 25µm and can rotate horizontally. To prevent any disturbances from air currents,
the pendulum is enclosed between two transparent walls. Outside the walls, a second beam with
two large tungsten spheres is free to rotate in order to alter the torques acting on the inner beam.

Figure 2: The TEL-Atomic pendulum

To determine the rotation angle of the beam, we will reflect a laser off of a mirror attached to
the support for the beam. The experiment has been set up so that the long axis of the inner beam is
parallel to the face of the mirror and the transparent plates. By tracking the position of the reflected
laser on a ruler, we can measure the changes in angular position of the inner beam. As we vary the
position of the outer beam, the torque applied to inner beam will change, altering the equilibrium
orientation of the pendulum.
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3 Uncertainty

If the variables x are independent, the error propogation law becomes

σ2(yi) =

n∑
j=1

(
∂yi
∂xj

)2σ2(xj) (4)

In Section 5.1, we will need to calculate the uncertainty of the mean y0 value for each orientation.
The equation for the mean is

x̄ =
x1 + x2 + ...

n
(5)

Then, according to the error propagation rule,

σ(x̄) =

√
(
1

n
)2σ2(x1) + (

1

n
)2σ2(x2) + ... =

1

n

√
σ2(x1) + σ2(x2) + ... (6)

In the same section, we will also need to calculate the uncertainty of θ, given by

θ =
1

2
tan−1(

A

B
) (7)

According to the error propagation rule,

σ(θ) =

√
[

B

2(A2 +B2)
]2σ2(A) + [− A

2(A2 +B2)
]2σ2(B) (8)

4 Results

Our results are summarized in Figures 3-8. We used the least squares method to find initial values
for our parameters. These initial parameters are summarized in Table 1.

Figure 3: First orientation, trial 1 Figure 4: First orientation, trial 2
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Figure 5: First orientation, trial 3 Figure 6: Second orientation, trial 1

Figure 7: Second orientation, trial 2 Figure 8: Second orientation, trial 3

Orientation Trial Amplitude λ ω ϕ y0

1 1 8.7591 1.2701·10−3 2.8568·10−2 3.0689 87.3466
1 2 5.9658 1.3803·10−3 2.8321·10−2 3.2558 87.5496
1 3 4.1846 1.3786·10−3 2.8279·10−2 3.1584 89.1780
2 1 7.9148 1.1218·10−3 2.6364·10−2 6.2800 90.4102
2 2 4.4083 1.0438·10−3 2.9056·10−2 6.2800 91.6280
2 3 5.2602 1.0704·10−3 2.8403·10−2 6.2639 91.7144

Table 1: Initial Parameters

We then used these initial parameters as our starting parameters when fitting using orthogonal
distance regression. This fit better incorporates the errors in the x-axis. These plots are shown in
Figures 9-14 and the new final parameters are displayed in Table 2.
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Figure 9: First orientation, trial 1 Figure 10: First orientation, trial 2

Figure 11: First orientation, trial 3 Figure 12: Second orientation, trial 1
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Figure 13: Second orientation, trial 2 Figure 14: Second orientation, trial 3

Orientation Trial Amplitude λ ω ϕ y0

1 1 8.7603 1.2704·10−3 2.8568·10−2 3.0691 87.3469
1 2 5.9658 1.3803·10−3 2.8321·10−2 3.2558 87.5496
1 3 4.1846 1.3786·10−3 2.8279·10−2 3.1584 89.1780
2 1 8.8611 1.2810·10−3 2.5622·10−2 6.6526 90.5230
2 2 4.4317 1.0577·10−3 2.8997·10−2 6.3010 91.6352
2 3 5.2605 1.0705·10−3 2.8403·10−2 6.2639 91.7144

Table 2: Final Parameters

The corresponding uncertainties are summarized in Table 3.

Orientation Trial Amplitude λ ω ϕ y0

1 1 1.4355·10−1 4.6536·10−5 6.6984·10−5 1.9838·10−2 5.1093·10−2

1 2 3.9903·10−2 2.3373·10−5 3.1291·10−5 7.9846·10−3 1.5148·10−2

1 3 4.9958·10−2 4.3683·10−5 6.1497·10−5 1.4297·10−2 1.8459·10−2

2 1 1.2107 3.7812·10−4 3.6360·10−4 1.2504·10−1 3.6408·10−1

2 2 1.2993·10−1 8.1814·10−5 8.2577·10−5 2.4580·10−2 3.3458·10−2

2 3 1.8452·10−1 1.0994·10−4 1.3050·10−4 3.6577·10−2 6.0197·10−2

Table 3: Standard error of parameters

5 Analysis

5.1 Angle of deflection

The position associated to each equilibrium is represented by y0 in Table 2. The mean equilibrium
position for the first orientation is 88.0248 while the mean equilibrium position for the second
orientation is 91.2909. The corresponding uncertainties can be calculated using Equation 6, from
which we obtain
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σ(ȳ1) =

√
(
1

3
)2σ2(y11) + (

1

3
)2σ2(y12) + (

1

3
)2σ2(y13) =

1

3

√
σ2(y11) + σ2(y12) + σ2(y13) (9)

for orientation 1, and

σ(ȳ2) =

√
(
1

3
)2σ2(y21) + (

1

3
)2σ2(y22) + (

1

3
)2σ2(y23) =

1

3

√
σ2(y21) + σ2(y22) + σ2(y23) (10)

for orientation 2. I have introduced a somewhat confusing notation where yab refers to the y0
value in Table 2 that is orientation a and trial b. Furthermore, ȳc refers to the mean ȳ0 value that
is orientation c. Thus, for orientation 1,

σ(ȳ1) =
1

3

√
(5.1093 · 10−2)2 + (1.5148 · 10−2)2 + (1.8459 · 10−2)2 = 0.01880 (11)

and for orientation 2,

σ(ȳ2) =
1

3

√
(3.6408 · 10−1)2 + (3.3458 · 10−2)2 + (6.0197 · 10−2)2 = 0.1235 (12)

Therefore,

ȳ1 = 88.0248cm± 0.01880cm = 0.8802m± 0.0001880m (13)

ȳ2 = 91.2909cm± 0.1235cm = 0.9129m± 0.001235m (14)

For our torque calculations, it is necessary to find the deflection angle θ shown in Figure 15.

Figure 15: Diagram of angle of deflection

We can compute θ using the the properties of right triangles. First, let us calculate the distance
A shown in Figure 16.
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Figure 16: Labeled diagram of angle of deflection

The vertex connecting A and B represents the point on the ruler directly in line with the mirror.
We measured this value by hand — it was 82cm ± 4cm or 0.82m ± 0.04m. Note that this value
need not be the center value between the values ȳ1 and ȳ2, since the mirror on the balance was not
perfectly parallel to the wall. Thus, for the first orientation,

A1 = (0.8802m± 0.0001880m)− (0.82m± 0.04m) = 0.06020m± 4.0188 · 10−2m (15)

and for the second orientation,

A2 = (0.9129m± 0.001235m)− (0.82m± 0.04m) = 0.09290± 4.1235 · 10−2m (16)

where the uncertainties come from applying the error propagation rule.
The shortest distance between the mirror and the wall, B, was also measured by hand. The

results of our measurements are summarized in the table below.

Measured Length (m) Uncertainty (m)

1 6.367 0.002
2 6.364 0.002
3 6.363 0.002
4 6.364 0.002
5 6.359 0.002
6 6.364 0.002

Table 4: Distance from mirror to wall

From the data in Table 4, we calculate the mean to be

B = 6.364m± 8.1650 · 10−4m (17)

where the uncertainty comes from applying the error propagation rule. Now we can calculate θ
as

θ =
1

2
tan−1(

A

B
) (18)
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where the uncertainty associated to θ is given by Equation 8. For the first orientation,

θ1 =
1

2
tan−1(

A1

B
) =

1

2
tan−1(

0.06020m± 4.0188 · 10−2m

6.364m± 8.1650 · 10−4m
) = 9.4595 · 10−3rad± 3.1572 · 10−3rad

(19)
and for the second orientation,

θ2 =
1

2
tan−1(

A2

B
) =

1

2
tan−1(

0.09290m± 4.1235 · 10−2m

6.364m± 8.1650 · 10−4m
) = 1.4598 · 10−2rad± 3.2390 · 10−3rad

(20)

5.2 Period

The period of oscillation is related to the angular frequency through the following equation

T =
2π

ω
(21)

Thus, we can calculate the periods for each trial using the values for ω in Table 2. These results
are shown in Table 5 below.

Orientation Trial Period (s)

1 1 219.9346
1 2 221.8570
1 3 222.1823
2 1 245.2262
2 2 216.6840
2 3 221.2142

Table 5: Periods

Since the restoring force is proportional to the displacement of the pendulum, the period is
independent of its amplitude. Therefore, we expect the period of each trial to be the same. The
mean period using the values from Table 5 is 224.5164s.

5.3 Moment of inertia

The moment of inertia I of the pendulum, the aluminum beam plus the two small spheres, can
be broken down into three parts: the moment of inertia of the rectangular prism, the moment of
inertia of one sphere, and the parallel axis theorem calculation for each sphere. We can calculate
the moment of inertia of the beam using the following equation

IBeam =
1

12
mBeam(l2 +w2) =

1

12
(0.00717kg)[(0.149m)2 +(0.0127m)2] = 1.3361 · 10−5kg ·m2 (22)

where mBeam is the beam’s mass, l is its length, and w is its width. If mBeam = 0.00717kg, l =
The moment of inertia of a single sphere can be calculated using the following equation

ISphere =
2

5
mSpherer

2 =
2

5
(0.0145kg)(0.00675m)2 = 2.6426 · 10−7kg ·m2 (23)

where mSphere is the sphere’s mass and r is its radius. To apply the parallel axis theorem to
each sphere, we need to calculate the distance between the center of mass of each sphere and the
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center of the beam. The moment of inertia of each sphere about the center of the beam can then
be calculated using the formula

I ′Sphere = ISphere +mSphered
2 = 2.6426 · 10−7kg ·m2 + (0.0145kg)(0.0667m)2 = 6.4773 · 10−5kg ·m2

(24)
where d is the distance between the center of the beam and the center of mass of a sphere.

Finally, the total moment of inertia of the pendulum about its center can be calculated by summing
the moment of inertia of the beam and the moment of inertia of each sphere about the center of the
beam

ITotal = IBeam+2I ′Sphere = 1.3361 ·10−5kg ·m2+2(6.4773 ·10−5kg ·m2) = 1.4291 ·10−4kg ·m2 (25)

5.4 Torsional constant

If the amplitude of the oscillations is not too large, the period of the oscillator is given by the
equation

T = 2π

√
ITotal

β
(26)

where β is the torsional constant of the tungsten wire. From this, we derive

β = ITotal(
2π

T
)2 = 1.4291 · 10−4kg ·m2(

2π

224.5164s
)2 = 1.1192 · 10−7 kg ·m2

s2
(27)

where we used the mean period found in Section 5.2.

5.5 Gravitational torque

5.5.1 Nearby large sphere on small sphere

Here we calculate the gravitational torque exerted on each of the two small spheres by each of the
two large spheres. First we will calculate the torque on a small sphere due to the nearby large
sphere. In the context of Figure 1, this could be the torque on A due to P1. The equation for
gravitational torque is

τ 1 = F 1 × r (28)

where r is the lever arm. Some relevant parameters for our calculations are shown in Figure
17.
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Figure 17: Diagram for torque calculations

As previously mentioned in Section 1, the gravitational force between two spheres can be given
by Newton’s law of gravitation

F 1 = G
mM

b2
b̂ (29)

where m is the mass of the small sphere, M is mass the of the large sphere, and b is the distance
between the center of masses of the two spheres. Substituting this expression into Equation 28,
we obtain

τ 1 = G
mM

b2
b̂× r (30)

and thus

τ1 = G
mMr

b2
(31)

In the context of Figure 17, this corresponds to motion in the counterclockwise direction.
Finally, substituting the parameter d in for the lever arm, we obtain

τ1 = G
mMd

b2
(32)

5.5.2 Farther large sphere on small sphere

Next, we calculate the torque on a small sphere due to the farther large sphere. In the context of
Figure 1, this could be the torque on A due to P2. In this case, the magnitude of the gravitation
force between the two spheres is

F2 = G
mM

4d2 + b2
(33)

The distance between a small sphere and the farther large sphere is shown in Figure 18 below,
as well as the angle ϕ between the force vector and the lever arm.
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Figure 18: Another diagram for torque calculations

The angle ϕ can be calculated as

ϕ = tan−1(
b

2d
) (34)

The corresponding torque becomes

τ 2 = F 2 × r = G
mMr

4d2 + b2
sin[tan−1(

b

2d
)] (35)

where τ2 twists the pendulum in the clockwise direction. Again, substituting the parameter d in
for the lever arm, we obtain

τ2 = G
mMd

4d2 + b2
sin[tan−1(

b

2d
)] (36)

5.5.3 Large sphere on beam

If we assume that the beam is a very thin uniform rod, the torque dτ contributed by an infinitesimally
small segment of the beam can be expressed as

dτ = F × x = Fxsinθ (37)

where F is the magnitude of the force acting on an infinitesimal segment dm that is at a distance
x from the center of the beam,

F = G
Mdm

α2
(38)

where α is the distance between the large sphere and the infinitesimal mass dm, which can be
expressed as

dm = λdx (39)

where λ represents the mass per unit length of the beam. Then,
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dτ = G
Mλdx

α2
xsinθ (40)

Thus, the total torque on half of the beam due to the nearby large sphere is

τ3 =

∫ l/2

0

G
Mλdx

α2
xsinθ (41)

where we integrate from 0 to l
2 , half the length of the beam. We can rewrite sinθ in terms of α

through the following relation

sinθ =
b

α
(42)

yielding

τ3 =

∫ l/2

0

G
Mλdx

α2

bx

α
(43)

We can then rewrite α in terms of x through the following relation

α =
√
(d− x)2 + b2 (44)

which yields the integral

τ3 =

∫ l/2

0

G
Mλbx

[(d− x)2 + b2]2
dx (45)

Simplifying this integral, we obtain

τ3 = GMλb

∫ l/2

0

x

[(d− x)2 + b2]2
dx (46)

where τ3 twists the pendulum in the counterclockwise direction, similar to τ1. Note that τ3
represents the torque acting on half of the beam due to the nearby sphere, and so just like τ1 and τ2,
there will be two contributions corresponding to each large sphere. Also note that we are neglecting
the torque acting on each half of the beam due to the farther sphere.

5.5.4 Total Torque

To a good approximation, the total torque on the pendulum will be

τtot = 2τ1 − 2τ2 + 2τ3 (47)

where τ1 and τ3 cause the pendulum to twist in the counterclockwise direction and τ2 causes
the pendulum to twist in the clockwise direction. Substituting Equations 32, 36, and 46 into
Equation 47, we obtain

τtot = 2[G
mMd

b2
]− 2[G

mMd

4d2 + b2
sin[tan−1(

b

2d
)]] + 2[GMλb

∫ l/2

0

x

[(d− x)2 + b2]2
dx] (48)

Note that Equation 48 corresponds to the second orientation because it has a net effect of
twisting the pendulum in the counterclockwise direction.
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5.6 Calculating Gravitational Constant G

Now we can solve for the gravitational constant G in terms of known parameters using Equation
2. For the first orientation, Equation 2 becomes

τ1 = −β(θcw − θ0) (49)

and for the second orientation,

τ2 = −β(θccw − θ0) (50)

Subtracting these equations, we obtain

τ2 − τ1 = −β(θccw − θ0)− [−β(θcw − θ0)] = β(θcw − θccw) (51)

which simplifies into

∆τ = β∆θ (52)

where θcw represents the angle of deflection corresponding the first orientation, and θccw repre-
sents the angle of deflection corresponding the second. Since τ1 and τ2 are equal and opposite, ∆τ
is simply twice the total torque calculated in Equation 48

∆τ = 4[G
mMd

b2
]− 4[G

mMd

4d2 + b2
sin[tan−1(

b

2d
)]] + 4[GMλb

∫ l/2

0

x

[(d− x)2 + b2]2
dx] (53)

It is convenient to write this as

∆τ

G
= 4[

mMd

b2
]− 4[

mMd

4d2 + b2
sin[tan−1(

b

2d
)]] + 4[Mλb

∫ l/2

0

x

[(d− x)2 + b2]2
dx] (54)

Usingm = 0.0145kg, M = 1.508kg, d = 0.0667m, b = 0.0458m, λ = 0.04812kg
m , and l

2 = 0.0745m
we obtain the value

∆τ

G
= 8.7896

kg2

m
(55)

From Equations 19 and 20, ∆θ becomes

∆θ = θcw − θccw = [9.4595 · 10−3rad± 3.1572 · 10−3rad]− [1.4598 · 10−2rad± 3.2390 · 10−3rad] (56)

Yielding

∆θ = −5.1385 · 10−3rad± 6.3962 · 10−3rad (57)

Rearranging Equation 52, we obtain

G =
β∆θ

(∆τ
G )

(58)

Inputting our value of β from Equation 27, our value of ∆θ from Equation 57, and our value
for ∆τ

G from Equation 55, we obtain the following value for G

G =
[1.1192 · 10−7 kg·m2

s2 ][5.1385 · 10−3rad± 6.3962 · 10−3rad]

8.7896kg2

m

= 6.5429 · 10−11 m3

kg · s2
(59)
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Using the error propagation rule, we calculate the uncertainty in G to be

σ(G) = 8.1443 · 10−11 m3

kg · s2
(60)

6 Discussion

The Cavendish experiment is a classic experiment that involves the delicate measurement of the
torsional motion induced by gravitational forces between small masses and large spheres. By carefully
observing and analyzing the torsion balance’s behavior, we were able to calculate the gravitational

constant G. Our measured value for G was found to be 6.5429 · 10−11 m3

kg·s2 , with an uncertainty

of 8.1443 · 10−11 m3

kg·s2 . The theoretical value of G, 6.6743 · 10−11 m3

kg·s2 , is remarkably close to our
estimate, and our uncertainty analysis indicates that it falls within our uncertainty range. The fact
that our experimental value falls within the uncertainty range indicates that our measurement is
consistent with the accepted value and supports the validity of our experimental setup and data
analysis.

However, it is important to acknowledge the sources of uncertainties in our experiment. Several
factors can contribute to uncertainties, such as measurement errors, environmental disturbances,
and limitations of the experimental setup. These uncertainties should be taken into account when
interpreting the results.

One potential source of uncertainty is the measurement of the equilibrium positions. Although
we took multiple measurements and averaged the results, there may still be inherent errors in the
measurement process. For example, it is possible that we had a tendency to record the time too
slowly per position, although one could argue that as long as this error was somewhat consistent,
it should not have affected our results since we would just be shifting the x-axis of our plots by
a constant value. With that said, improving the measurement technique or using more precise
equipment would likely increase the precision of our equilibrium positions.

Furthermore, environmental disturbances can also introduce uncertainties. Variations in temper-
ature can cause expansion or contraction of the apparatus, leading to uncertainty in the distances we
measured. Despite implementing shielding measures, air currents may still create additional forces.
Electromagnetic interference from the surroundings could also introduce spurious forces. Finally,
errors in the calibration of any of the instruments, such as the torsion balance, could also have
affected our measurements.

To further improve the accuracy of the experiment, increasing the number of trials and mea-
surements can provide more reliable results and reduce statistical uncertainties. This would involve
repeating the experiment multiple times and analyzing a larger dataset.

6.1 Imperfect Initial Alignment of the Torsion Balance

We mentioned in Section 2 that the experiment was set up so that the long axis of the inner beam
is parallel to the face of the transparent plates. One source of error is the imperfect alignment of
this inner beam before any torques are applied. Let us assume that the inner beam is displaced by
an angle ϵ from the horizontal, as shown in Figure 19.

The distance between the large sphere and the small sphere is now

distance =

√
[d(1− cosϵ)]2 + [b+ dtanϵ− (

d

cosϵ
− d)sinϵ]2 (61)

Thus, our force calculation in Section 5.5.1 becomes

F = G
mM

[d(1− cosϵ)]2 + [b+ dtanϵ− ( d
cosϵ − d)sinϵ]2

(62)
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Figure 19: Imperfect Alignment Calculations

and our torque calculation becomes

τ = G
mMr

[d(1− cosϵ)]2 + [b+ dtanϵ− ( d
cosϵ − d)sinϵ]2

sinθ (63)

where θ is the angle between the force vector and the lever arm,

θ = 180− ϵ− arctan[
b+ dtanϵ− ( d

cosϵ − d)sinϵ

d(1− cosϵ)
] (64)

Thus, substituting in d for the lever arm and the expression for θ, we obtain

τ = G
mMd

[d(1− cosϵ)]2 + [b+ dtanϵ− ( d
cosϵ − d)sinϵ]2

sin[180− ϵ−arctan[
b+ dtanϵ− ( d

cosϵ − d)sinϵ

d(1− cosϵ)
]]

(65)
Let’s assume a 0.1rad misalignment and recalculate G. For ϵ = 0.1rad, we obtain a torque of

τ1 = 0.6918G (66)

which yields

τtot = 2[0.6918G]− 2[G
mMd

4d2 + b2
sin[tan−1(

b

2d
)]] + 2[GMλb

∫ l/2

0

x

[(d− x)2 + b2]2
dx] (67)

Then

∆τ

G
= 4[0.6918]− 4[

mMd

4d2 + b2
sin[tan−1(

b

2d
)]] + 4[Mλb

∫ l/2

0

x

[(d− x)2 + b2]2
dx] (68)

yielding

∆τ

G
= 8.9661

kg2

m
(69)

17



and so

G =
[1.1192 · 10−7 kg·m2

s2 ][5.1385 · 10−3rad]

8.9661kg2

m

= 6.4142 · 10−11 m3

kg · s2
(70)

Thus, an of 0.1rad had the effect of lowering G by 1.287 · 10−12, indicating that an of −0.1rad
would raise G by this amount, leaving us with a G value of 6.6716 · 10−11. This is remarkably close
to the theoretical value for G, and thus it is very possible that a small misalignment of the beam
caused our value to be slightly off.

7 Conclusion

In conclusion, the Cavendish experiment, conducted by Henry Cavendish in 1797, provided crucial
insights into the nature of gravity and the measurement of the gravitational constant. Through his
innovative and meticulous setup involving two lead spheres and a torsion balance, Cavendish was
able to indirectly measure the gravitational force between the spheres and determine the value of
the gravitational constant.

The experiment’s significance lies in its contribution to our understanding of universal gravitation,
confirming Isaac Newton’s inverse square law and providing experimental evidence for the existence
of gravitational attraction between objects. By accurately measuring the small torsional deflections
caused by the gravitational force, Cavendish was able to determine the gravitational constant, which
represents the strength of the gravitational interaction between masses.

The Cavendish experiment not only solidified Newton’s theory of gravity but also paved the way
for future discoveries and developments in the field of physics. Its influence extends to various areas,
including cosmology, astrophysics, and even modern technological advancements. The Cavendish
experiment stands as a testament to the scientific method and the relentless pursuit of knowledge.
It remains a landmark achievement in physics, continually inspiring scientists to delve deeper into
the workings of the universe and fostering a greater understanding of gravity’s fundamental role in
shaping our world.

18


	Introduction
	Experimental Setup
	Uncertainty
	Results
	Analysis
	Angle of deflection 
	Period
	Moment of inertia
	Torsional constant
	Gravitational torque
	Nearby large sphere on small sphere
	Farther large sphere on small sphere
	Large sphere on beam
	Total Torque

	Calculating Gravitational Constant G

	Discussion
	Imperfect Initial Alignment of the Torsion Balance

	Conclusion

